Prepare Interview

Exams Attended

Mock Exams

Make Homepage

Bookmark this page

Subscribe Email Address

Generative AI Interview Questions and Answers

Ques 1. What is Generative AI?

Generative AI stands for Generative Artificial Intelligence, is a subset of artificial intelligence (AI) that focuses on enabling machines to generate content or data that resembles human-generated information.

It’s a technology that’s gaining immense popularity in various fields, from natural language processing to creative content generation.

Generative AI operates on a principle of learning patterns from existing data and using that knowledge to create new content.

It relies on deep learning techniques, particularly neural networks, to accomplish this task. These neural networks are trained on large datasets, allowing them to generate text, images, music, and more.

Is it helpful? Add Comment View Comments

Ques 2. How does Generative AI work?

Generative AI works by using of neural networks, specifically Recurrent Neural Networks (RNNs) and more recently, Transformers. Here’s are a few steps of how it works:

  • Data Collection: To begin, a substantial amount of data related to the specific task is gathered. For instance, if you want to generate text, the model needs a massive text corpus to learn from.
  • Training: The neural network is then trained on this data. During training, the model learns the underlying patterns, structures, and relationships within the data. It learns to predict the next word, character, or element in a sequence.
  • Generation: Once trained, the model can generate content by taking a seed input and predicting the subsequent elements. For instance, if you give it the start of a sentence, it can complete the sentence in a coherent and contextually relevant manner.
  • Fine-Tuning: Generative AI models can be further fine-tuned for specific tasks or domains to improve the quality of generated content.

Is it helpful? Add Comment View Comments

Ques 3. What are the top applications of Generative AI?

Generative AI has a wide range of applications across different industries:

  • Natural Language Processing (NLP): It’s used for text generation, language translation, and chatbots that can engage in human-like conversations.
  • Content Generation: Generative AI can create articles, stories, and even poetry. It’s used by content creators to assist in writing.
  • Image and Video Generation: It can generate realistic images and videos, which are valuable in fields like entertainment and design.
  • Data Augmentation: In data science, it’s used to create synthetic data for training machine learning models.
  • Healthcare: Generative AI helps in generating medical reports, simulating disease progression, and drug discovery.

Is it helpful? Add Comment View Comments

Ques 4. What are some popular Generative AI models?

Generative AI models have revolutionized the field of artificial intelligence, offering remarkable capabilities in generating content, from text to images and beyond. In this section, we’ll explore some of the most popular and influential Generative AI models that have left a significant mark on the generative AI industry.

  1. GPT-4 (Generative Pre-trained Transformer 4): GPT-4, developed by OpenAI, is a standout among Generative AI models. With billions of parameters, it has demonstrated remarkable text generation abilities. GPT-4 can answer questions, write essays, generate code, and even create conversational agents that engage users in natural language.
  2. BERT (Bidirectional Encoder Representations from Transformers): Although primarily known for its prowess in natural language understanding, BERT also exhibits generative capabilities. It excels in tasks like text completion and summarization, making it a valuable tool in various applications, including search engines and chatbots.
  3. DALL·E: If you’re interested in generative art, DALL·E is a model to watch. Developed by OpenAI, this model can generate images from textual descriptions. It takes creativity to new heights by creating visuals based on written prompts, showing the potential of Generative AI in the visual arts.
  4. StyleGAN2: When it comes to generating realistic images, StyleGAN2 is a name that stands out. It can create high-quality, diverse images that are virtually indistinguishable from real photographs. StyleGAN2 has applications in gaming, design, and even fashion.
  5. VQ-VAE-2 (Vector Quantized Variational Autoencoder 2): This model combines elements of generative and variational autoencoders to generate high-quality, high-resolution images. It has made significant strides in image compression and generation.

Is it helpful? Add Comment View Comments

Ques 5. What are the limitations of Generative AI?

While Generative AI has made remarkable strides, it’s essential to acknowledge its limitations and challenges. Understanding these limitations is crucial for responsible and effective use. Here are some key constraints of Generative AI:

  1. Data Dependency: Generative AI models, including GANs, require vast amounts of data for training. Without sufficient data, the quality of generated content may suffer, and the model might produce unrealistic or biased results.
  2. Ethical Concerns: Generative AI can inadvertently perpetuate biases present in the training data. This raises ethical concerns, particularly when it comes to generating content related to sensitive topics, such as race, gender, or religion.
  3. Lack of Control: Generative AI can be unpredictable. Controlling the output to meet specific criteria, especially in creative tasks, can be challenging. This lack of control can limit its practicality in some applications.
  4. Resource Intensive: Training and running advanced Generative AI models demand substantial computational resources, making them inaccessible to smaller organizations or individuals with limited computing power.
  5. Overfitting: Generative models may memorize the training data instead of learning its underlying patterns. This can result in content that lacks diversity and creativity.
  6. Security Risks: There is the potential for malicious use of Generative AI, such as generating deepfake videos for deceptive purposes or creating fake content to spread misinformation.
  7. Intellectual Property Concerns: When Generative AI is used to create content, determining ownership and copyright becomes complex. This raises legal questions about intellectual property rights.
  8. Validation Challenges: It can be difficult to validate the authenticity of content generated by Generative AI, which can be problematic in contexts where trust and reliability are paramount.

Is it helpful? Add Comment View Comments

Most helpful rated by users:

©2023 WithoutBook