Python Matplotlib Interview Questions and Answers
Intermediate / 1 to 5 years experienced level questions & answers
Ques 1. Explain the difference between `plt.show()` and `plt.savefig()` in Matplotlib.
`plt.show()` displays the plot interactively, while `plt.savefig()` saves the current figure to a file without displaying it.
Example:
plt.plot([1, 2, 3, 4], [10, 20, 25, 30])
plt.savefig('plot.png')
Ques 2. Explain the difference between `plt.plot()` and `plt.scatter()`.
`plt.plot()` connects data points with lines, while `plt.scatter()` shows individual data points without connecting them.
Example:
plt.plot([1, 2, 3, 4], [10, 20, 25, 30])
plt.scatter([1, 2, 3, 4], [10, 20, 25, 30])
plt.show()
Ques 3. What is the purpose of `plt.legend()` in Matplotlib?
`plt.legend()` is used to add a legend to the plot, providing information about the plotted data series.
Example:
plt.plot([1, 2, 3, 4], [10, 20, 25, 30], label='Line 1')
plt.legend()
plt.show()
Ques 4. What is a subplot in Matplotlib?
A subplot is a way to organize multiple plots within a single figure. It is created using `plt.subplot()`.
Example:
plt.subplot(2, 1, 1)
plt.plot([1, 2, 3, 4], [10, 20, 25, 30])
plt.subplot(2, 1, 2)
plt.scatter([1, 2, 3, 4], [10, 20, 25, 30])
plt.show()
Ques 5. What is the role of the `plt.xticks()` and `plt.yticks()` functions in Matplotlib?
`plt.xticks()` and `plt.yticks()` are used to customize the tick positions and labels on the x-axis and y-axis, respectively.
Example:
plt.plot([1, 2, 3, 4], [10, 20, 25, 30])
plt.xticks([1, 2, 3, 4], ['A', 'B', 'C', 'D'])
plt.show()
Ques 6. What is the purpose of the `plt.imshow()` function in Matplotlib?
`plt.imshow()` is used to display images in Matplotlib plots.
Example:
import matplotlib.image as mpimg
img = mpimg.imread('image.png')
plt.imshow(img)
plt.show()
Ques 7. How can you add text annotations to a Matplotlib plot?
Use the `plt.text()` function to add text annotations at specified coordinates on the plot.
Example:
plt.plot([1, 2, 3, 4], [10, 20, 25, 30])
plt.text(2, 15, 'Annotation')
plt.show()
Ques 8. Explain the purpose of the `plt.pie()` function in Matplotlib.
`plt.pie()` is used to create a pie chart in Matplotlib, representing data in a circular statistical graphic.
Example:
sizes = [20, 30, 40, 10]
labels = ['A', 'B', 'C', 'D']
plt.pie(sizes, labels=labels, autopct='%1.1f%%')
plt.show()
Ques 9. How can you create a logarithmic scale in Matplotlib?
Use the `plt.xscale()` and `plt.yscale()` functions with the argument 'log' to create a logarithmic scale on the x-axis and y-axis, respectively.
Example:
plt.plot([1, 2, 3, 4], [10, 20, 30, 40])
plt.xscale('log')
plt.yscale('log')
plt.show()
Ques 10. How can you create error bars in a Matplotlib plot?
Use the `plt.errorbar()` function to create a plot with error bars.
Example:
x = [1, 2, 3, 4]
y = [10, 20, 25, 30]
error = [1, 2, 1, 3]
plt.errorbar(x, y, yerr=error, fmt='o', capsize=5)
plt.show()
Ques 11. How can you create a violin plot in Matplotlib?
Use the `plt.violinplot()` function to create a violin plot, which is used for visualizing the distribution of data.
Example:
data = [np.random.normal(0, std, 100) for std in range(1, 4)]
plt.violinplot(data, showmedians=True)
plt.show()
Ques 12. How can you create a polar plot in Matplotlib?
Use the `plt.polar()` function to create a polar plot, which is useful for visualizing data in circular coordinates.
Example:
theta = np.linspace(0, 2*np.pi, 100)
r = 1 + np.sin(3*theta)
plt.polar(theta, r)
plt.show()
Most helpful rated by users:
- What is Matplotlib and what is its primary use?
- How can you add labels to the x-axis and y-axis in a Matplotlib plot?
- How to create a scatter plot in Matplotlib?
- Explain the purpose of the `plt.grid()` function in Matplotlib.
- How can you set the limits of the x-axis and y-axis in Matplotlib?
Related interview subjects
NumPy interview questions and answers - Total 30 questions |
Python interview questions and answers - Total 106 questions |
Python Pandas interview questions and answers - Total 48 questions |
Python Matplotlib interview questions and answers - Total 30 questions |
Django interview questions and answers - Total 50 questions |
Pandas interview questions and answers - Total 30 questions |
Deep Learning interview questions and answers - Total 29 questions |
PySpark interview questions and answers - Total 30 questions |
Flask interview questions and answers - Total 40 questions |
PyTorch interview questions and answers - Total 25 questions |
Data Science interview questions and answers - Total 23 questions |
SciPy interview questions and answers - Total 30 questions |
Generative AI interview questions and answers - Total 30 questions |