Prepare Interview

Mock Exams

Make Homepage

Bookmark this page

Subscribe Email Address

PySpark Interview Questions and Answers

Ques 6. Explain the concept of a SparkSession in PySpark.

SparkSession is the entry point to any PySpark functionality. It is used to create DataFrames, register DataFrames as tables, and execute SQL queries.

Example:

from pyspark.sql import SparkSession

spark = SparkSession.builder.appName('example').getOrCreate()

Is it helpful? Add Comment View Comments
 

Ques 7. What is the purpose of the 'cache' operation in PySpark?

The 'cache' operation is used to persist a DataFrame or RDD in memory, enhancing the performance of iterative algorithms or repeated operations.

Example:

df.cache()

Is it helpful? Add Comment View Comments
 

Ques 8. How can you handle missing or null values in a PySpark DataFrame?

You can use the 'na' functions like 'drop' or 'fill' to handle missing values in a PySpark DataFrame.

Example:

df.na.drop()

Is it helpful? Add Comment View Comments
 

Ques 9. Explain the purpose of the 'collect' action in PySpark.

The 'collect' action retrieves all elements of a distributed dataset (RDD or DataFrame) and brings them to the driver program.

Example:

data = df.collect()

Is it helpful? Add Comment View Comments
 

Ques 10. What is the role of the 'broadcast' variable in PySpark?

A 'broadcast' variable is used to cache a read-only variable in each node of a cluster to enhance the performance of joins.

Example:

from pyspark.sql.functions import broadcast

result = df1.join(broadcast(df2), 'key')

Is it helpful? Add Comment View Comments
 

Most helpful rated by users:

©2025 WithoutBook