Prepare Interview

Mock Exams

Make Homepage

Bookmark this page

Subscribe Email Address

TensorFlow Interview Questions and Answers

Related differences

TensorFlow vs PyTorch

Ques 11. Explain the difference between eager execution and graph execution in TensorFlow.

Eager execution evaluates operations immediately, while graph execution involves building a computational graph to be executed later. Eager execution is the default mode in TensorFlow 2.x.

Example:

No explicit session or graph code is required in TensorFlow 2.x

Is it helpful? Add Comment View Comments
 

Ques 12. What is the purpose of the tf.GradientTape in TensorFlow?

tf.GradientTape is used for automatic differentiation in TensorFlow. It records operations for computing gradients, allowing you to calculate gradients with respect to variables.

Example:

x = tf.constant(3.0)
with tf.GradientTape() as tape:
    tape.watch(x)
    y = x * x
dy_dx = tape.gradient(y, x)

Is it helpful? Add Comment View Comments
 

Ques 13. Explain the concept of model checkpoints in TensorFlow.

Model checkpoints are a way to save the current state of a model during training. They can be used to resume training, fine-tune a model, or deploy a trained model.

Example:

checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(filepath='model_checkpoint.h5', save_best_only=True)

Is it helpful? Add Comment View Comments
 

Ques 14. What is the purpose of the tf.function decorator in TensorFlow 2.x?

The tf.function decorator is used to convert a Python function into a TensorFlow graph, allowing for better performance through graph execution and enabling graph optimizations.

Example:

@tf.function
def my_function(x):
    return x * x

Is it helpful? Add Comment View Comments
 

Ques 15. Explain the concept of data augmentation in image classification using TensorFlow.

Data augmentation involves applying random transformations to input data during training to increase the diversity of the dataset. In image classification, this can include rotations, flips, and zooms.

Example:

data_augmentation = tf.keras.Sequential([
    tf.keras.layers.experimental.preprocessing.RandomFlip('horizontal'),
    tf.keras.layers.experimental.preprocessing.RandomRotation(0.2),
])

Is it helpful? Add Comment View Comments
 

Most helpful rated by users:

©2025 WithoutBook