Prepare Interview

Mock Exams

Make Homepage

Bookmark this page

Subscribe Email Address

Deep Learning Interview Questions and Answers

Ques 16. Explain the concept of a loss function in the context of machine learning models.

A loss function measures the difference between the predicted output and the actual target. It quantifies the model's performance during training and is minimized during the optimization process. Common loss functions include mean squared error, cross-entropy, and hinge loss.

Is it helpful? Add Comment View Comments
 

Ques 17. What is the role of the optimizer in training a neural network?

The optimizer is responsible for updating the model's parameters during training to minimize the loss function. Common optimizers include stochastic gradient descent (SGD), Adam, and RMSprop. The choice of optimizer can significantly impact the convergence and performance of a model.

Is it helpful? Add Comment View Comments
 

Ques 18. Explain the concept of weight initialization in neural networks and why it is important.

Weight initialization is the process of setting initial values for the weights of a neural network. Proper weight initialization is crucial for preventing issues like vanishing or exploding gradients during training. Common methods include random initialization and Xavier/Glorot initialization.

Is it helpful? Add Comment View Comments
 

Ques 19. What is the difference between a shallow neural network and a deep neural network?

A shallow neural network has only a small number of hidden layers, typically one or two, while a deep neural network has a larger number of hidden layers. Deep networks are better at capturing complex hierarchical features in data but may require more data and computational resources.

Is it helpful? Add Comment View Comments
 

Ques 20. Explain the concept of one-hot encoding and its use in machine learning.

One-hot encoding is a technique to represent categorical variables as binary vectors. Each category is represented by a unique binary value, with all zeros except for the index corresponding to the category, which is set to one. It is commonly used in tasks like natural language processing.

Is it helpful? Add Comment View Comments
 

Most helpful rated by users:

©2025 WithoutBook