Prepare Interview

Mock Exams

Make Homepage

Bookmark this page

Subscribe Email Address

Data Warehouse Interview Questions and Answers

Ques 16. What is a star join in the context of Data Warehousing?

A star join is a type of join operation that involves connecting a fact table directly to one or more dimension tables. It is a key aspect of star schema design and helps simplify and speed up query processing.

Example:

Joining a sales fact table with 'Product' and 'Customer' dimension tables in a star schema.

Is it helpful? Add Comment View Comments
 

Ques 17. Explain the concept of slowly changing facts (SCF) in a Data Warehouse.

Slowly changing facts refer to the handling of changes in the measured values (facts) over time in a data warehouse. It involves managing updates or inserts to maintain historical accuracy in the facts.

Example:

Updating the sales quantity in a fact table to reflect changes over time due to corrections or adjustments.

Is it helpful? Add Comment View Comments
 

Ques 18. What is the difference between a data warehouse and a data mart?

While a data warehouse is a centralized repository that stores data from various sources for enterprise-wide analysis, a data mart is a subset of a data warehouse focused on a specific business unit or department.

Example:

A data warehouse may store company-wide sales data, while a data mart within it may focus specifically on regional sales.

Is it helpful? Add Comment View Comments
 

Ques 19. How does indexing impact the performance of a Data Warehouse?

Indexing involves creating data structures to quickly locate and retrieve rows from tables. In a data warehouse, proper indexing can significantly improve query performance by reducing the amount of data that needs to be scanned.

Example:

Creating indexes on columns frequently used in WHERE clauses to accelerate data retrieval in a data warehouse.

Is it helpful? Add Comment View Comments
 

Ques 20. What is the role of a star schema in enhancing query performance?

A star schema simplifies and speeds up query processing by connecting a central fact table to dimension tables. This design reduces the number of joins needed for queries, leading to faster and more efficient data retrieval.

Example:

Retrieving sales data by joining a fact table with 'Product' and 'Time' dimensions in a star schema.

Is it helpful? Add Comment View Comments
 

Most helpful rated by users:

©2025 WithoutBook