Prepare Interview

Mock Exams

Make Homepage

Bookmark this page

Subscribe Email Address

PySpark Interview Questions and Answers

Ques 26. What is the purpose of the 'accumulator' in PySpark?

An 'accumulator' is a variable that can be used in parallel operations and is updated by multiple tasks. It is typically used for implementing counters or sums in distributed computing.

Example:

accumulator = spark.sparkContext.accumulator(0)

# Inside a transformation or action
accumulator.add(1)

Is it helpful? Add Comment View Comments
 

Ques 27. Explain the use of the 'broadcast' hint in PySpark.

The 'broadcast' hint is used to explicitly instruct PySpark to use a broadcast join strategy for better performance, especially when one DataFrame is significantly smaller than the other.

Example:

from pyspark.sql.functions import broadcast

result = df1.join(broadcast(df2), 'key')

Is it helpful? Add Comment View Comments
 

Ques 28. What is the purpose of the 'agg' method in PySpark?

The 'agg' method is used for aggregating data in a PySpark DataFrame. It allows you to perform various aggregate functions like sum, avg, max, min, etc., on specified columns.

Example:

result = df.agg({'Sales': 'sum', 'Quantity': 'avg'})

Is it helpful? Add Comment View Comments
 

Ques 29. How can you handle data skewness in PySpark?

Data skewness can be handled by using techniques like salting, bucketing, or using the 'broadcast' hint to distribute data more evenly across partitions.

Example:

df.write.option('skew_hint', 'true').parquet('output_path')

Is it helpful? Add Comment View Comments
 

Ques 30. Explain the purpose of the 'coalesce' method in PySpark.

The 'coalesce' method is used to reduce the number of partitions in a PySpark DataFrame. It helps in optimizing the performance when the number of partitions is unnecessarily large.

Example:

df_coalesced = df.coalesce(5)

Is it helpful? Add Comment View Comments
 

Most helpful rated by users:

©2025 WithoutBook