Prepare Interview

Mock Exams

Make Homepage

Bookmark this page

Subscribe Email Address

PySpark Interview Questions and Answers

Ques 1. What is PySpark?

PySpark is the Python API for Apache Spark, a fast and general-purpose cluster computing system.

Example:

from pyspark.sql import SparkSession

spark = SparkSession.builder.appName('example').getOrCreate()

Is it helpful? Add Comment View Comments
 

Ques 2. Explain the concept of Resilient Distributed Datasets (RDD) in PySpark.

RDD is the fundamental data structure in PySpark, representing an immutable distributed collection of objects. It allows parallel processing and fault tolerance.

Example:

data = [1, 2, 3, 4, 5]
rdd = spark.sparkContext.parallelize(data)

Is it helpful? Add Comment View Comments
 

Ques 3. What is the difference between a DataFrame and an RDD in PySpark?

DataFrame is a higher-level abstraction on top of RDD, providing a structured and tabular representation of data. It supports various optimizations and operations similar to SQL.

Example:

df = spark.createDataFrame([(1, 'John'), (2, 'Jane')], ['ID', 'Name'])

Is it helpful? Add Comment View Comments
 

Ques 4. How can you perform the join operation in PySpark?

You can use the 'join' method on DataFrames. For example, df1.join(df2, df1['key'] == df2['key'], 'inner') performs an inner join on 'key'.

Example:

result = df1.join(df2, df1['key'] == df2['key'], 'inner')

Is it helpful? Add Comment View Comments
 

Ques 5. Explain the purpose of the 'groupBy' operation in PySpark.

'groupBy' is used to group the data based on one or more columns. It is often followed by aggregation functions to perform operations on each group.

Example:

grouped_data = df.groupBy('Category').agg({'Price': 'mean'})

Is it helpful? Add Comment View Comments
 

Most helpful rated by users:

©2024 WithoutBook